Designing a New Structure Based on Learning Automaton to Improve Evolutionary Algorithms (With Considering Some Case Study Problems)
نویسندگان
چکیده
Evolutionary algorithms are some of the most crucial random approaches to solve the problems, but sometimes generate low quality solutions. On the other hand, Learning automata are adaptive decision-making devices, operating on unknown random environments, So it seems that if evolutionary and learning automaton based algorithms are operated simultaneously, the quality of results will increase sharply and the algorithm is likely to converge on best results very quickly. This paper contributes an algorithm based on learning automaton to improve the evolutionary algorithm for solving a group of NP problems. It uses concepts of machine learning in search process, and increases the efficiency of evolutionary algorithm (especially genetic algorithm). In fact, the algorithm is prevented from being stuck in local optimal solutions by using learning automaton. Another positive point of the hybrid algorithm is its noticeable stability since standard division of results, which is obtained by different executions of algorithm, is low; that is, the results are practically the same. Therefore, as the proposed algorithm is used for a set of well-known NP problems and the results are very suitable it can be considered as a precise and reliable technique to solve the problems.
منابع مشابه
Designing a Meta-Heuristic Algorithm Based on a Simple Seeking Logic
Nowadays, in majority of academic contexts, it has been tried to consider the highest possible level of similarities to the real world. Hence, most of the problems have complicated structures. Traditional methods for solving almost all of the mathematical and optimization problems are inefficient. As a result, meta-heuristic algorithms have been employed increasingly during recent years. In thi...
متن کاملGradient-based Ant Colony Optimization for Continuous Spaces
A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...
متن کاملGradient-based Ant Colony Optimization for Continuous Spaces
A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملNew Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem
Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...
متن کامل